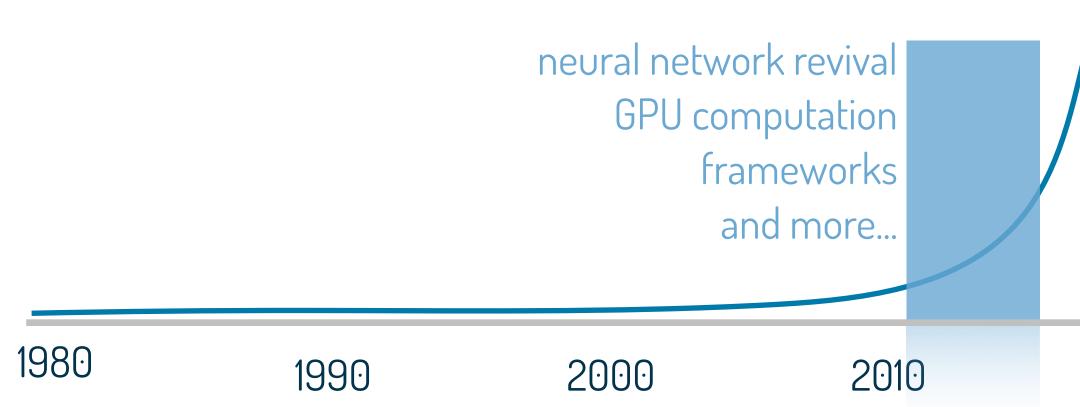


Machine Learning for Industrial Process Improvement: Three lessons learned

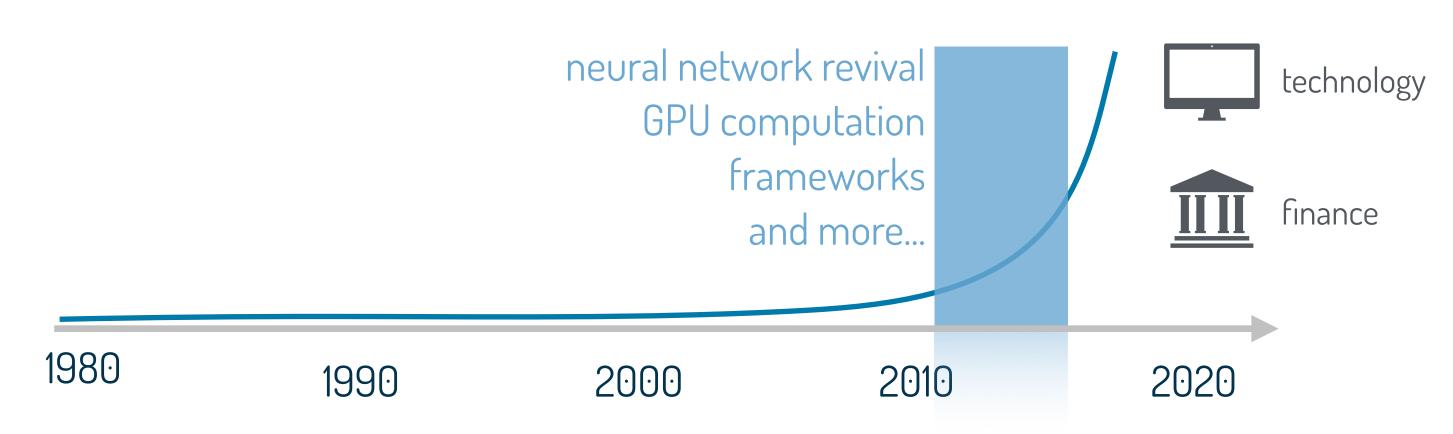
Assistant (Adj.) Professor of Computer Science @ Columbia University

Alp Kucukelbir, PH.D. Co-Founder, Chief Scientist @ Fero Labs

There is great momentum in ML



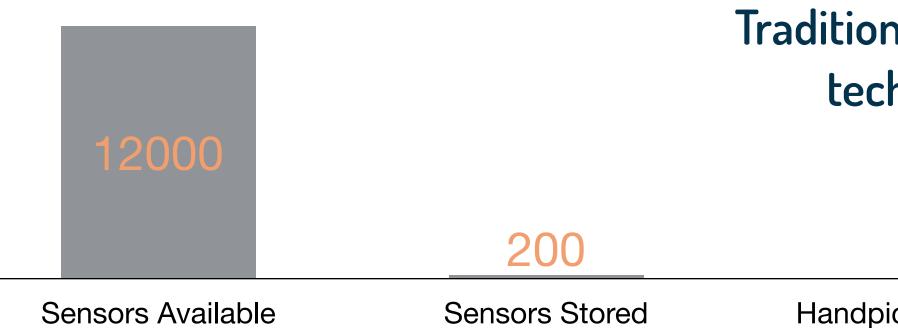
There is great momentum in ML



What about the **manufacturing** sector?

How industrial process improvement works at a steel plant of a \$16B revenue firm

PROBLEM: want to reduce faulty production (minimize scrap rate) **DATA:** 12k sensors across a production line



Traditional Six Sigma techniques

Handpicked Sensors

How industrial process improvement works

But, we have all this **observational data**.

Let's use the latest ML model/technology!

Traditional Six Sigma techniques

What is **fero**?

An industrial **ML software application** that empowers users to build **interpretable**, **expertise-based**, and **safe** ML models to improve their production.

Who uses fero?

How do they use **fero**?

Our customers:

- adaptively adjust production for dynamic recipes,
- **maximize uptime** by predicting machine failures,
- minimize faults by discovering new product configurations

- address the root cause of complex
 - quality and scrap issues,
- identify ways to reduce emissions with existing hardware.

Lessons Learned

Lesson One

Interpretability matters.

Sometimes you can't change the inputs

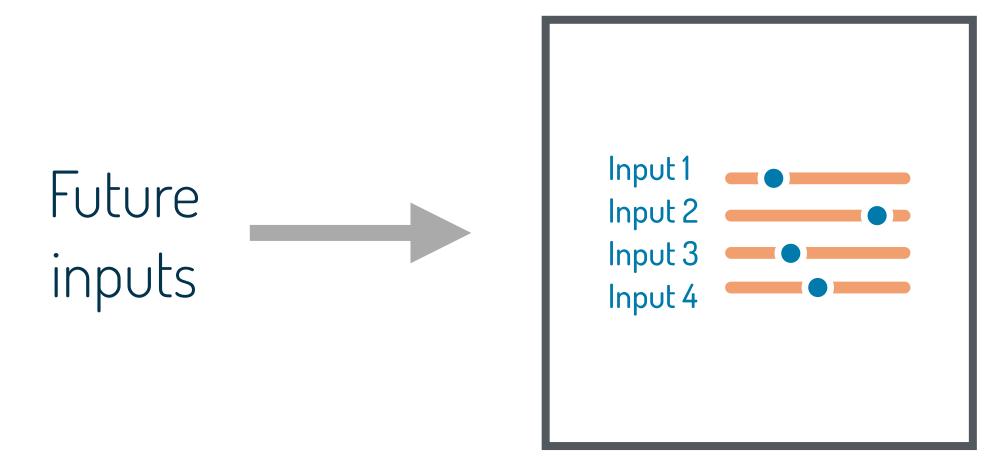
888

Interpretable Machine Learning **Typical AI/ML**

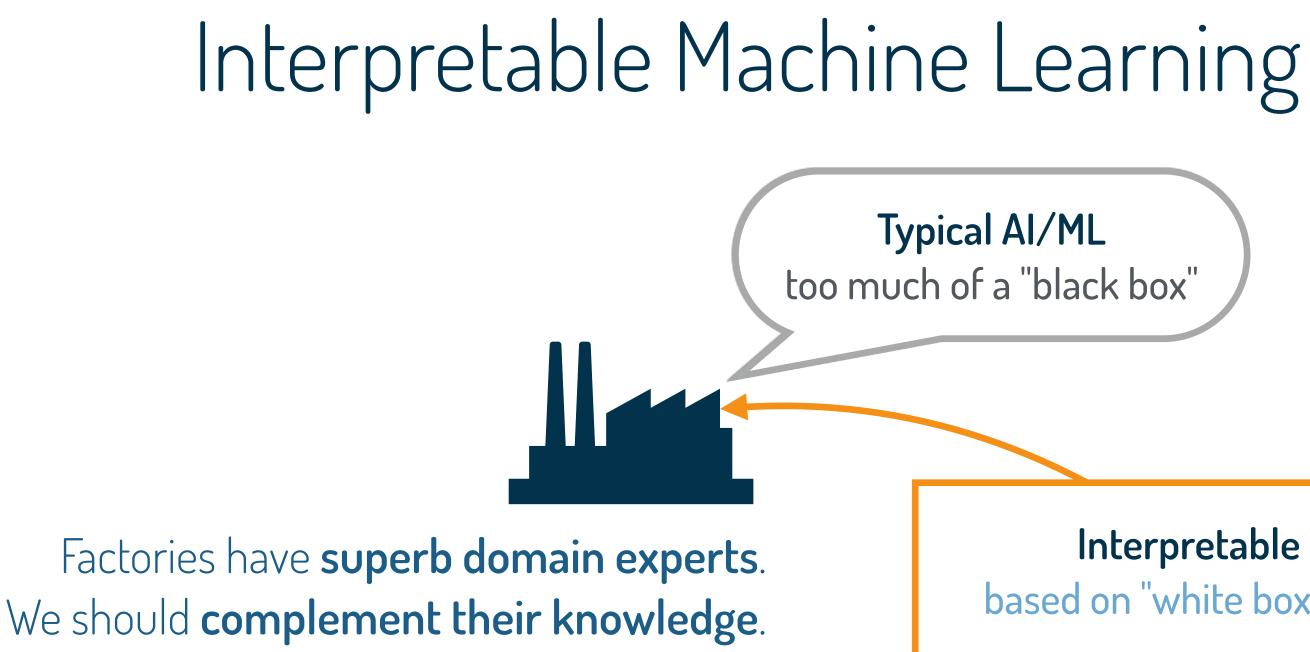
too much of a "black box"

Factories have superb domain experts. We should **complement their knowledge**.

Interpretable Machine Learning **NEED** to be open. **NEED** to show relationships. **NEED** to be interpretable.



Predicted outputs



Interpretable ML based on "white box" models

Lesson Two

Humans are part of "the loop".

Typical ML/AI works great when...

Advertisement: user clicks

Social Network: face recognition

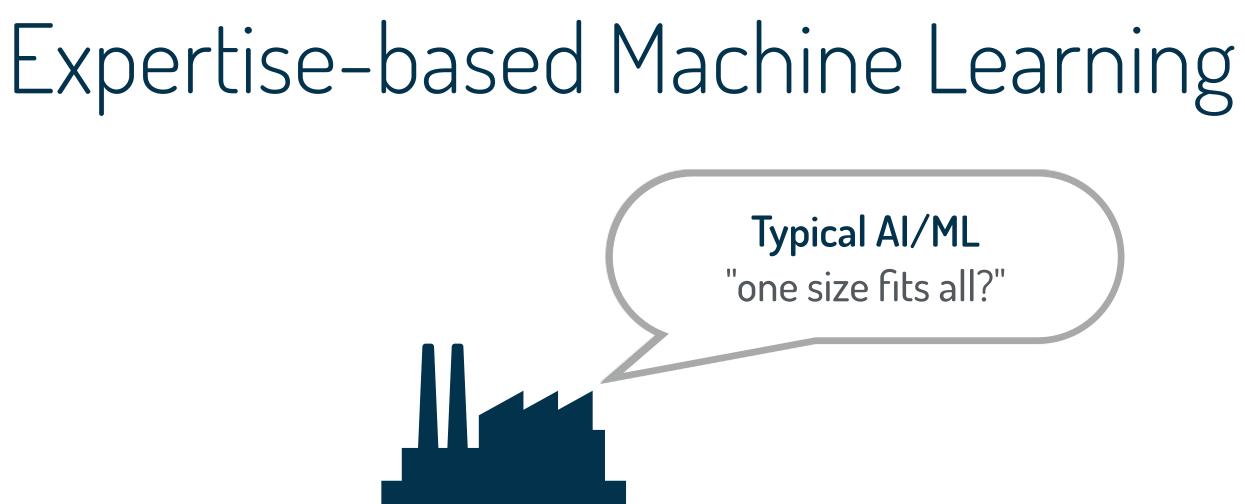
Media Company: recommendation

people clicking on websites.

2D images of 3D faces.

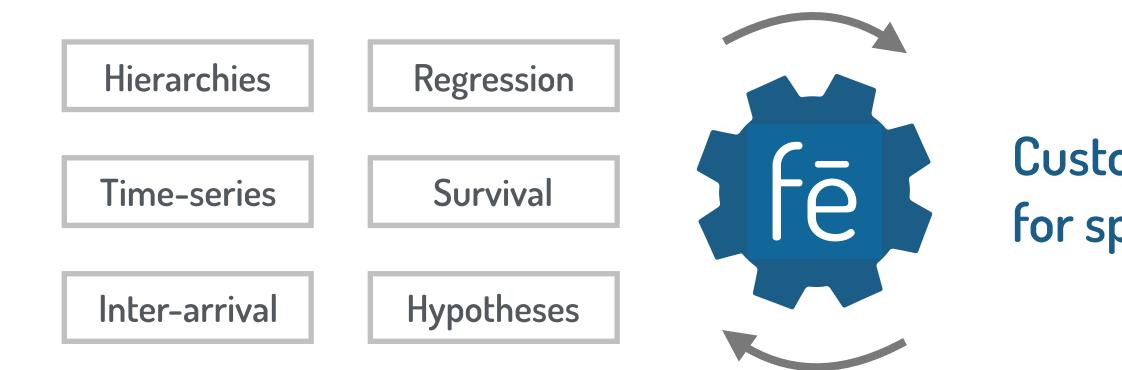
...and we can throw massive amounts of data at the problem.

- We don't really know how to model
- We don't really know how to model
- We don't really know how to model people consuming media.

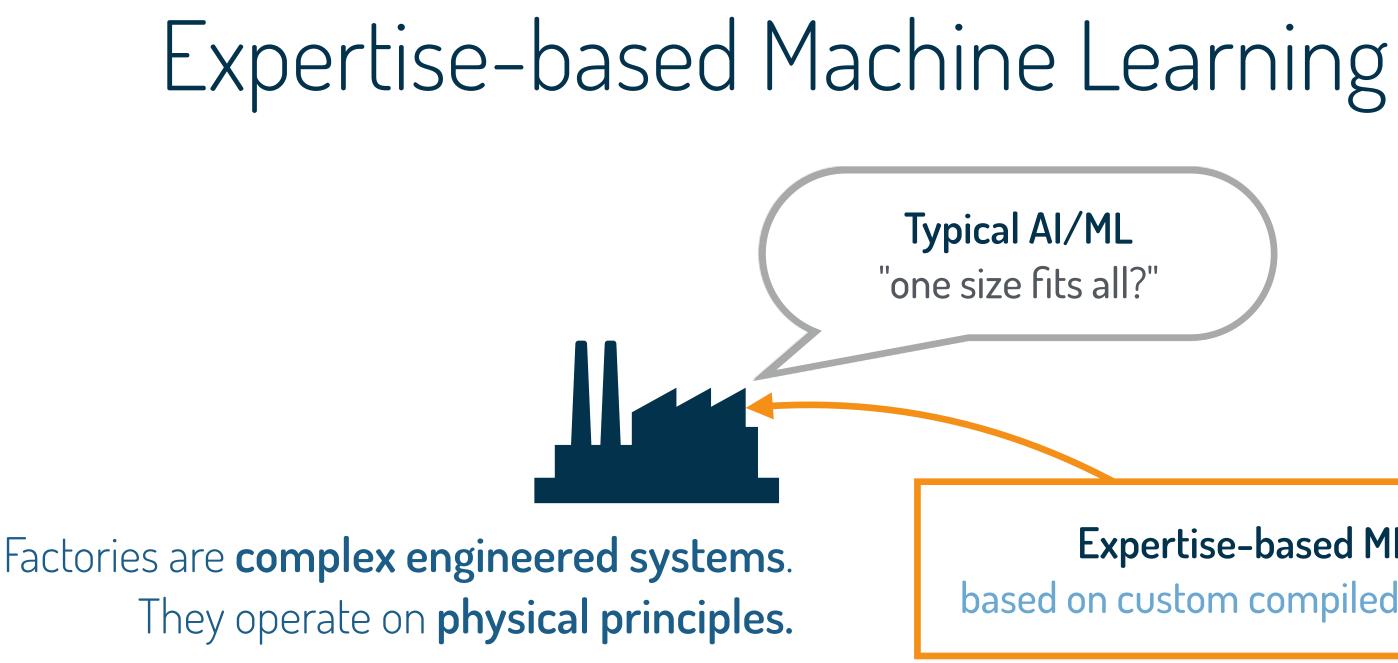


Factories are **complex engineered systems**. They operate on **physical principles**.

Expertise-based Machine Learning NEED to be tailored. NEED to conform to constraints. NEED to be bespoke.



Customized solutions for specific use cases.



Expertise-based ML based on custom compiled models

Lesson Three

Statistics is still "cool".

The cost of a mistake is enormous

A **social network** picks an irrelevant article or advertisement.

A media company recommends a boring clip or movie.

A factory produces an out of specification set of products, for 20 minutes.

\$0.01

\$100.00

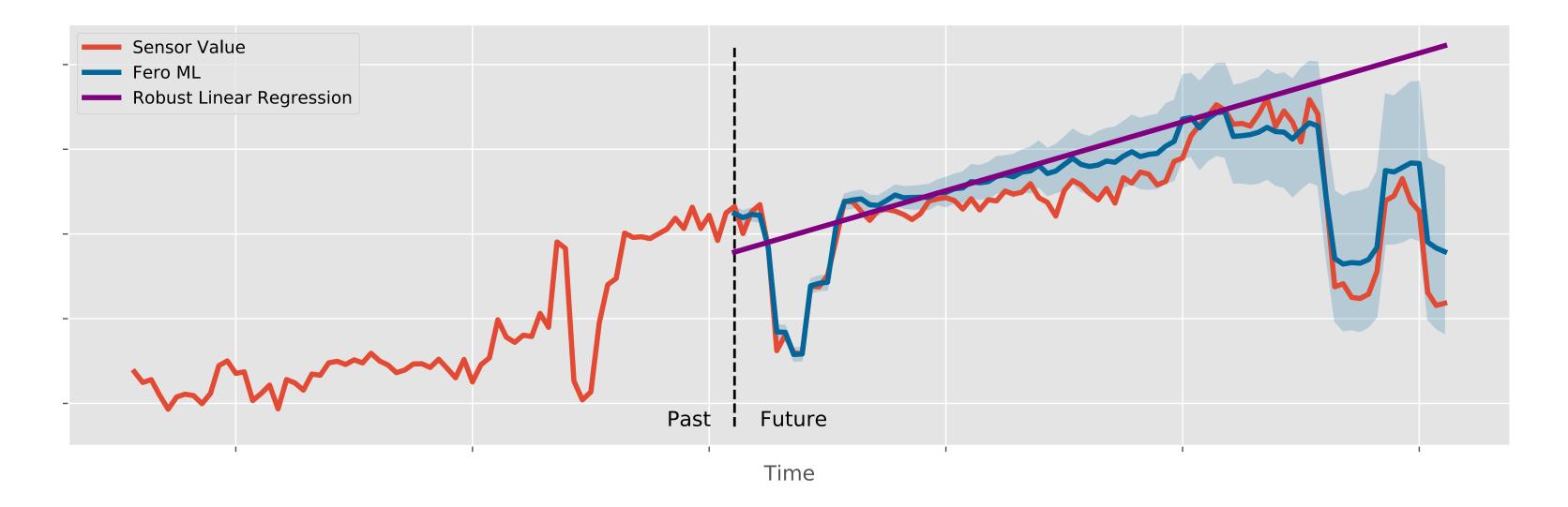
\$100,000.00

Safe Machine Learning **Typical AI/ML** plain predictions aren't enough

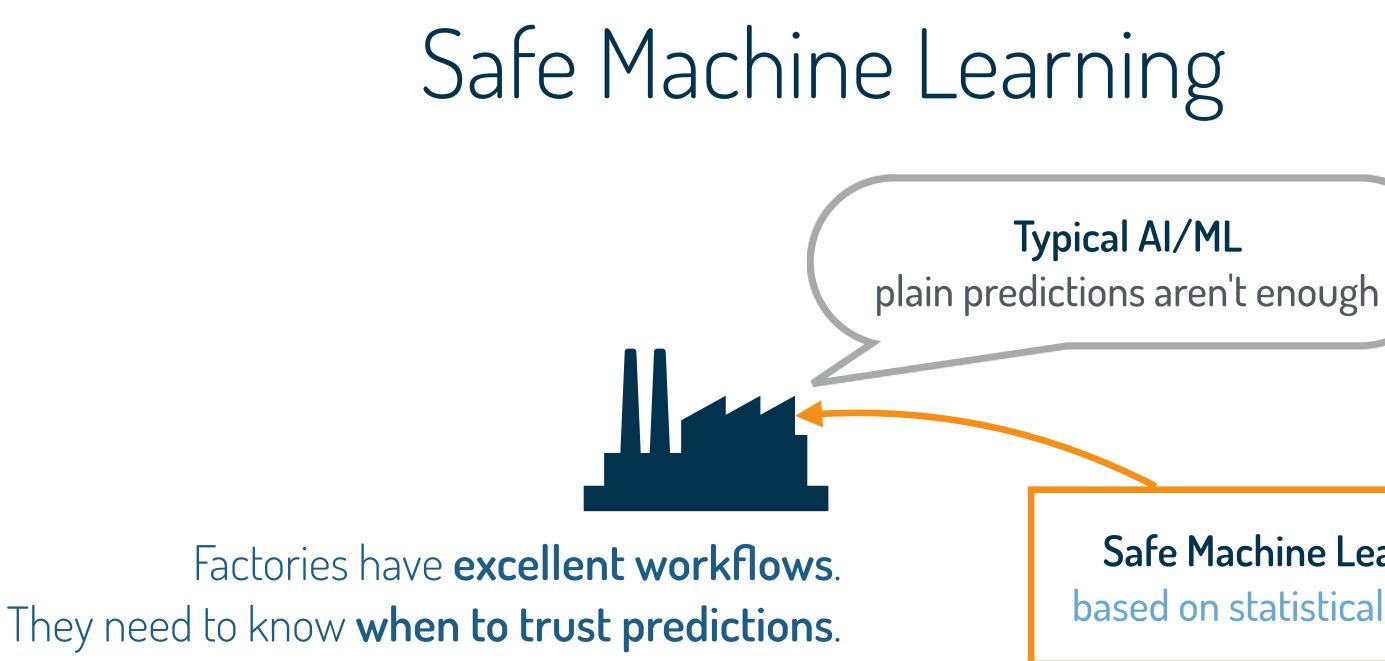
Factories have **excellent workflows**. They need to know **when to trust predictions**.

Safe Machine Learning

NEED to be honest. **NEED** to provide statistical guarantees. **NEED** to be safe.



Jg



Safe Machine Learning based on statistical models

META LESSON

To create value, must change behavior.

To change behavior, must empower users.

alp@ferolabs.com alp@cs.columbia.edu

Alp Kucukelbir, PH.D. Co-Founder, Chief Scientist @ Fero Labs Assistant (Adj.) Professor of Computer Science @ Columbia University